Zoledronic Acid and Survival in Patients with Metastatic Bone Disease from Lung Cancer and Elevated Markers of Osteoclast Activity

Vera Hirsh, MD,* Pierre P. Major, MD, FRCP(C),† Allan Lipton, MD,‡ Richard J. Cook, PhD,§ Corey J. Langer, MD,¶ Matthew R. Smith, MD, PhD,‖ Janet E. Brown, MD,# and Robert E. Coleman, MD, FRCP**

Introduction: Bone metastases from non-small cell lung cancer (NSCLC) are associated with skeletal-related events (SREs) and elevated levels of N-telopeptide of type I collagen (NTX) in some patients. Zoledronic acid (ZOL) reduces SRE risk and NTX levels.

Methods: To assess effects of baseline variables, including NTX levels (normal: NTX < 64 nmol/mmol creatinine; high: NTX ≥ 64 nmol/mmol creatinine), on treatment effects in NSCLC patients, a retrospective analysis was performed in NSCLC patients with bone metastases (N = 382) treated with ZOL or placebo every 3 weeks in a 21-month randomized clinical trial in patients with NSCLC or other solid tumors. Cox proportional hazards models assessed relative risks (RRs) of SREs, bone lesion progression, and death. Multivariate models analyzed covariate effects on survival.

Results: For both placebo- and ZOL-treated patients, high baseline NTX correlated with increased SRE risk (p = 0.068 and 0.012, respectively). Although high versus normal baseline NTX correlated with more than twofold increased risks of bone lesion progression and death in the placebo group (p = 0.039 and 0.001, respectively), correlations were weaker in the ZOL group (RR = 1.38; p = 0.0186 and RR = 1.27; p = 0.142, respectively), suggesting an interaction effect of ZOL and baseline NTX. Among patients with high baseline NTX, ZOL significantly reduced the RR of death by 35% versus placebo (p = 0.024). Per multivariate analysis, ZOL treatment (p = 0.005), higher lymphocyte count (p = 0.011), performance status 0 to 1 (p = 0.012), and absence of narcotic use (p = 0.016) correlated with improved survival.

Conclusions: This retrospective analysis revealed statistically significant correlations between ZOL and increased survival versus placebo in NSCLC patients and high baseline NTX levels.

Key Words: Bone markers, Non-small cell lung cancer, N-telopeptide of type I collagen, Survival, Zoledronic acid.

Lung cancer is the most common cancer worldwide, and non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer. Advanced NSCLC is often highly symptomatic, and an estimated 30 to 40% of patients develop bone metastases. In these patients, skeletal complications can cause considerable morbidity and may result in functional impairment and loss of mobility. Increased tumor growth in bone can result in increased tumor growth leading to potentially debilitating skeletal-related events (SREs) such as pathologic fractures and bone pain requiring palliative radiotherapy. These SREs are clinically meaningful sequelae that are associated with increased health care costs and decreased quality of life. Moreover, pathologic fractures have been associated with a significantly increased risk of death in patients with malignant bone disease from multiple myeloma or bone metastases from breast cancer or prostate cancer. Although no significant correlation was observed in patients with lung cancer or other aggressive solid tumors because of their short median time of survival in patients enrolled in the trial, the extended survival of patients in this setting with advances in primary therapies may increase the risk of death in patients who experience a pathologic fracture. Therefore, preventing SREs or delaying their onset might not only improve quality of life but also potentially extend survival.

Interactions between tumor and bone typically result in increased rates of bone metabolism, which can be detected by increases in levels of biochemical markers of bone metabolism. For example, serum bone-specific alkaline phosphatase (BALP) levels reflect ongoing levels of bone formation, and N-telopeptide of type I collagen (NTX) is a sensitive marker of osteolysis. Bone markers provide insight into the extent or aggressiveness of bone metastases. In an
exploratory analysis of the placebo-control arms of two phase III trials of zoledronic acid, cancer patients with bone metastases and elevated NTX levels (≥ 50 nmol/mmol creatinine) were found to have approximately twofold increases in their risk of SREs and bone disease progression and an approximately three- to fivefold increased risk of death compared with patients with low NTX levels (p < 0.01 for all).11 Similarly, compared with patients with low BALP levels, patients with elevated BALP levels on study had significant increases in their relative risks (RRs) of SREs and death. Recent bone marker assessment results during bisphosphonate treatment have also been shown to have prognostic significance.12

Bisphosphonates are inhibitors of bone resorption used in the oncology setting for the prevention of SREs and treatment of hypercalcemia of malignancy in patients with bone metastases. Zoledronic acid (ZOMETA; Novartis Pharmaceuticals Corporation, East Hanover, NJ; Novartis Pharma AG, Basel, Switzerland) is the only bisphosphonate that has demonstrated efficacy for the prevention of SREs in patients with bone metastases from a wide range of solid tumors including breast cancer, prostate cancer, and lung cancer.14–17 In a phase III, multicenter, randomized, placebo-controlled trial, zoledronic acid (4 mg via 15-minute infusion every 3 weeks for up to 21 months) significantly delayed the onset and reduced the ongoing risk of SREs compared with placebo in patients with bone metastases secondary to lung cancer and other aggressive solid tumors.15,16 Zoledronic acid also significantly lowered NTX levels relative to baseline.12,16 Approximately one half of the enrolled patients had NSCLC, and their 1-year survival rate was approximately 30%.15 However, correlations between baseline NTX levels and outcomes have not been evaluated specifically in patients with NSCLC using the currently accepted upper limit of normal for NTX levels in oncology patients (i.e., 64 nmol/mmol creatinine), and prognostic models for survival in patients with bone metastases from NSCLC are needed. Moreover, although survival was not a primary end point of this zoledronic acid study, survival was approximately 1 month longer for zoledronic acid–treated patients with NSCLC compared with placebo (not statistically significant).15

The current analysis was initiated to investigate whether baseline bone marker levels had prognostic significance in patients with NSCLC treated with zoledronic acid in a phase III, randomized, placebo-controlled trial and whether the nonsignificant survival increase with zoledronic acid versus placebo in the overall NSCLC stratum was driven by subsets of patients who may have benefited more than others during treatment.15,16

Patients and Treatment

Patients with documented bone metastases secondary to NSCLC or other solid tumors (excluding breast or prostate cancer) were eligible for this trial. Baseline disease characteristics, radiologic examinations, Eastern Cooperative Oncology Group (ECOG) performance status, and serum and urine chemistry values were assessed before the initiation of treatment. Patients were randomized to receive zoledronic acid (4 mg or 8 mg) or placebo via 15-minute infusion every 3 weeks for 9 months. Patients who completed this core phase were offered to continue blinded treatment for another year. The final analysis was performed at 21 months. After the study was initiated, the 8-mg zoledronic acid dose was reduced to 4 mg to ensure renal safety, and this group was thereafter referred to as the zoledronic acid 8/4-mg group. The majority of infusions in this group were administered at the 4-mg dose level, and outcomes were similar between the 4-mg and the 8/4-mg treatment arms. Therefore, both zoledronic acid groups are combined in the current analysis. Previous analyses have been performed based on the combined groups.12

Patients with NSCLC who were treated with either zoledronic acid or placebo were included in the retrospective analysis and were also analyzed according to baseline NTX levels.

Clinical Endpoints

In the prospective trial, the proportion of patients with an SRE was the primary end point.15,16 The SRE composite end point is an objective measurement of clinically meaningful skeletal morbidity.18 Survival is the primary outcome evaluated in the current analyses because this is the ultimate end point in oncology trials and is not affected by observation bias. Bone lesion progression was also evaluated because it is a variable that has been correlated with bone marker level increases,19 although this end point was limited by the frequency of radiologic assessment in the current database (approximately every 3 months during the trial).15,16

Bone Markers

Baseline urinary NTX levels were assessed only in patients treated in the United States or Canada. Urinary NTX was measured by enzyme-linked immunosorbent assay, normalized to urinary creatinine, and categorized according to the following variables: low NTX, < 64 nmol/mmol creatinine; high NTX, ≥ 64 nmol/mmol creatinine, based on the upper limit of normal for disease-free premenopausal women. Serum BALP levels were also measured by enzyme-linked immunosorbent assay.

Statistical Analyses

Patients with NSCLC who had baseline NTX and BALP assessments were included in the bone marker subset analyses. Cox regression models were used to assess associations between bone marker levels and outcomes (e.g., SREs, bone lesion progression, and death) and between bisphosphonate treatment and survival in patients with normal or high NTX.20 Kaplan-Meier estimates were computed for the proportion of patients alive over time by group.21 The cumulative

PATIENTS AND METHODS

This was a retrospective analysis of patients with NSCLC in a phase III, multicenter, randomized, placebo-controlled trial of zoledronic acid in patients with bone metastases from NSCLC or other solid tumors (not including breast or prostate cancer).15,16 Details of the study design have been previously published.15,16 A brief description is provided herein.
probability of an on-study SRE was assessed using survival-adjusted cumulative incidence functions because of the competing risk of death. After the significant benefit of zoledronic acid in the high NTX subset was identified, a series of multivariate analyses to further investigate the effect were preplanned and then executed.

Multivariate regression analyses were performed to investigate the potential effects of baseline characteristics and treatment effects on survival. For parameters without an established cut-off value (e.g., the upper limit of normal), either the median for the specific population in the model was used or the parameter was treated as a continuous variable. The baseline variables included in each of these models were treatment group (zoledronic acid 4 mg or 8/4 mg versus placebo); sex; race; cancer duration; age at study entry; weight at study entry; Functional Assessment of Cancer Therapy-General (FACT-G) total score; Brief Pain Inventory (BPI) composite pain score; ECOG performance status; predominant lesion type; NTX status (normal or high); BALP status (normal or \(\geq 146 \) U/L); and the following variables using the median (listed in parentheses for the high-NTX subset) as a cut-off value: urinary NTX level (102 nmol/mmol creatinine), serum creatinine (1 mg/dL), serum lactate dehydrogenase (LDH) 246.5 U/L, lymphocytes (14.025%; and as a continuous variable), albumin (38 g/L; and as a continuous variable), and hemoglobin (11.7 g/dL; and as a continuous variable). All available baseline demographic and disease characteristics data were included in the univariate and full multivariate models to ensure that variables of unexpected significance were captured in the reduced model. For generation of the reduced model, the initial full model included only patients for whom there was a complete data set for all variables to minimize the confounding effect of correlated variables on the model. The majority of patients who were not included in this model were missing either NTX or BPI data.

To identify any significant interactions between treatment and each baseline variable, multivariate models were generated using the treatment group, the respective baseline prognostic variable, and their interaction term. The multivariate model included all baseline variables, and a reduced model was generated by backward elimination until only significant variables remained in the model; variables were considered significant if \(p < 0.05 \).

RESULTS

Baseline Characteristics for Patients with NSCLC

In the phase III trial of zoledronic acid in patients with lung cancer or other solid tumors, 382 patients with NSCLC were randomized to zoledronic acid \((n = 259) \) or placebo \((n = 123) \) (Table 1).

Patient demographics and baseline disease characteristics were similar between the treatment groups. A total of 263 patients had baseline NTX assessments, and 144 (55%) had high baseline NTX levels. This subset had a lower median time from the diagnosis of bone metastases to study entry compared with the overall population.

Table 1. Patient Demographics and Baseline Disease Characteristics (Study 011)

<table>
<thead>
<tr>
<th>Factor</th>
<th>NSCLC Patients ((n = 382))</th>
<th>High-NTX Subset ((n = 144))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoledronic Acid ((n = 259))</td>
<td>Placebo ((n = 123))</td>
</tr>
<tr>
<td>Sex, (n) (%)</td>
<td>63 (37–88)</td>
<td>63 (39–82)</td>
</tr>
<tr>
<td>Male</td>
<td>178 (68.7)</td>
<td>78 (63.4)</td>
</tr>
<tr>
<td>Female</td>
<td>81 (31.3)</td>
<td>45 (36.6)</td>
</tr>
<tr>
<td>Race, (n) (%)</td>
<td>230 (88.8)</td>
<td>112 (91.1)</td>
</tr>
<tr>
<td>White</td>
<td>29 (11.2)</td>
<td>11 (8.9)</td>
</tr>
<tr>
<td>Black/Asian/Other</td>
<td>214 (82.6)</td>
<td>110 (89.4)</td>
</tr>
<tr>
<td>ECOG PS 0 or 1, (n) (%)</td>
<td>104 (43.9)</td>
<td>52 (47.7)</td>
</tr>
<tr>
<td>BPI < 3.25 U, (n) (%)(^a)</td>
<td>129 (50.0)</td>
<td>55 (45.8)</td>
</tr>
<tr>
<td>SGOT < 23.0 U, (n) (%)(^a)</td>
<td>174 (67.4)</td>
<td>91 (75.2)</td>
</tr>
<tr>
<td>NTX level, nmol/mmol creatinine(^b)</td>
<td>84.8 ± 68.5</td>
<td>77.8 ± 45.2</td>
</tr>
<tr>
<td>Serum creatinine, mg/dL(^b)</td>
<td>1.01 ± 0.25</td>
<td>1.01 ± 0.21</td>
</tr>
<tr>
<td>Baseline LDH < 246.5 U/L, (n) (%)(^a)</td>
<td>128 (49.6)</td>
<td>61 (50.8)</td>
</tr>
<tr>
<td>Baseline lymphocytes < 14.025, (n) (%)(^a)</td>
<td>126 (49.4)</td>
<td>61 (51.3)</td>
</tr>
<tr>
<td>Median time since diagnosis of bone metastases, months</td>
<td>0.82</td>
<td>0.61</td>
</tr>
</tbody>
</table>

\(^a\) Percentages were calculated using only those patients who had data for this parameter.

\(^b\) Values reported as mean ± standard deviation.

NSCLC, non-small cell lung cancer; NTX, N-telopeptide of type I collagen; ECOG, Eastern Cooperative Oncology Group; PS, performance status; BPI, Brief Pain Inventory; U, unit; SGOT, serum glutamic-oxaloacetic transaminase; SRE, skeletal-related event; LDH, lactate dehydrogenase.
Skeletal Morbidity and Overall Survival

Among all patients with NSCLC, zoledronic acid significantly reduced the risk of a first on-study SRE versus placebo \((p = 0.028; \text{Fig. 2})\). Andersen-Gill multiple event analysis, which accounts for all SREs and for the timing of SREs, revealed a significant 38% reduction in the risk of developing SREs for the zoledronic acid groups compared with the placebo group \((RR = 0.62; p = 0.001)\). There were no significant differences in time to bone lesion progression between groups. Radiologic assessments mandated by the study, however, were only performed approximately every 3 months unless clinically indicated.

Median survival after study entry was 177 days for patients with NSCLC. Patients with NSCLC treated with zoledronic acid lived approximately 1 month longer than those in the placebo group, but this difference was not statistically significant (median survival, 187 days for zoledronic acid versus 157 days for placebo; \(p = 0.539)\).

Based on the observations regarding survival and the weaker prognostic significance of high baseline NTX levels among patients who were treated with zoledronic acid versus placebo, the effects of baseline NTX levels on zoledronic acid treatment benefits were examined.

Analysis by \(N\)-Telopeptide Level in Patients with NSCLC

Subset analyses were performed on the 262 patients who had baseline NTX assessments. Statistical heterogeneity for the treatment effect of zoledronic acid on survival between the high and low NTX groups was detected \((p = 0.018)\), suggesting that these two groups were different and that inferences regarding possible treatment effects should be made separately for them. In the group of 118 patients who had normal baseline NTX levels, the Kaplan-Meier survival curves \((\text{Fig. 3A})\) and risk of death were similar for the zoledronic acid-treatment groups compared with placebo \((RR = 1.326; p = 0.223)\). In contrast, among the 144 patients with high baseline NTX levels, zoledronic acid and placebo groups had significantly different Kaplan-Meier survival curves \((\text{Fig. 3B})\), and zoledronic acid significantly reduced the risk of death by 35% compared with placebo \((RR = 0.652; p = 0.025)\). Further assessments were performed on the high-NTX subset to investigate factors that might have contributed to the survival differences between the zoledronic acid and placebo groups.

In the high-NTX subgroup, the majority of patients \((85\%)\) in both the treatment and placebo groups had an ECOG performance status of 0 or 1, approximately one half of the patients were \(\geq 65\) years of age, and characteristics were well balanced between the treatment groups \((\text{Table 1})\).\(^{15,16}\) Moreover, the percentage of patients receiving concomitant chemotherapy was similar between patients who had high NTX levels and the overall patient population in each treatment group. Approximately 80% of all patients receiving zoledronic acid and patients with elevated NTX levels receiving zoledronic acid also received chemotherapy. Similarly, 76% of all placebo-treated patients and placebo-treated patients with elevated NTX levels were receiving chemotherapy.
Analysis of Baseline Covariates and Treatment Effects on Survival (Overall)

For the overall population of patients with NSCLC and bone marker assessments, 12 baseline variables were found to significantly correlate with improved survival in univariate models: high FACT-G total score; lower BPI composite pain score; female sex; no baseline requirement for narcotic pain medication; ECOG performance status of 0 or 1; normal NTX status; normal BALP status; serum creatinine < 1.0 mg/dL; absolute lymphocyte count; and serum glutamic-oxaloacetic transaminase, albumin, and LDH below the median value. However, after adjustment in a multivariate model, NTX and BALP status and levels of creatinine, serum glutamic-oxaloacetic transaminase, and lymphocytes decreased in prognostic significance, and treatment with zoledronic acid showed a trend toward a survival benefit compared with placebo (RR $= 0.765$; $p = 0.103$).

The effects of baseline covariates on the association between treatment groups and survival were assessed in two multivariate models (Table 2). The first of these included all patients with information for each of the respective baseline variables (the number of patients contributing to these analyses differs depending on variable), and the second included only patients with a complete set of data for every variable ($n = 244$). In both models, survival benefits with zoledronic acid treatment significantly varied by race, ECOG performance status, and baseline NTX level variables. In the second analysis, baseline LDH status emerged as a covariable that profoundly affected the survival benefit. In a reduced multivariate model involving patients with complete data ($n = 244$), adjusting for the effects of FACT-G total score, nar-
whereas NTX was not a significant covariate.

tus, prior SRE, baseline lymphocyte, and albumin levels were
only FACT-G score, narcotics use, ECOG performance sta-
investigating the effects of LDH level on treatment benefits,
N-telopeptide of type I collagen in nmol/mmol creatinine; LDH, lactate dehydrogenase, in g/L; SGOT, serum glutamic-oxaloacetic transaminase; Albumin, in g/L.

model confirmed the survival benefit for zoledronic acid
43% reduction in the risk of death compared with placebo
zoledronic acid was associated with a statistically significant
and no requirement for narcotic pain medication remained
higher than the median lymphocyte level (Table 3). However,
FACT-G total score, no baseline requirement for narcotic
and LDH level. Further analyses are underway to investigate
effects were identified, including race, performance status,
levels; however, other significant covariates for treatment
Table 3). However, after adjustment in a multivariate model, only treatment with
bility of patients with NSCLC, the effects of baseline covari-
ates on the survival benefit of zoledronic acid were analyzed
in two multivariate models in the high baseline-NTX subset
(Table 4). In both models, survival effects from treatment
were found to vary significantly based on age, race, serum
LDH level, and NTX level relative to the median for the
high-NTX group (102.0 nmol/mmol creatinine). The survival
benefit in patients treated with zoledronic acid was greatest
among patients with a shorter time since their primary cancer
diagnosis, younger age, and less profound NTX elevations.

The current analysis was designed to investigate differences
in treatment effects based on patients’ bone marker levels; however, other significant covariates for treatment
effects were identified, including race, performance status,
and LDH level. Further analyses are underway to investigate
how the significant covariates associated with improved survival
with zoledronic acid treatment versus placebo interact,
especially in regard to LDH status.

Analysis of Baseline Covariates and Treatment
Effects on Survival (High NTX)

In univariate models in the high-NTX subset, the following
covariates significantly correlated with improved survival:
treatment with zoledronic acid versus placebo, higher
FACT-G total score, no baseline requirement for narcotic
pain medication, ECOG performance status of 0 or 1, and
higher than the median lymphocyte level (Table 3). However,
after adjustment in a multivariate model, only treatment with
zoledronic acid versus placebo, higher FACT-G total score,
and no requirement for narcotic pain medication remained
significant. The reduced multivariate model showed that
zoledronic acid was associated with a statistically significant
43% reduction in the risk of death compared with placebo
(RR = 0.565; p = 0.0047). Therefore, this multivariate
model confirmed the survival benefit for zoledronic acid
versus placebo that was observed in the initial analyses in
the high-NTX subset.

Similar to the analyses performed in the overall population
of patients with NSCLC, the effects of baseline covari-
ates on the survival benefit of zoledronic acid were analyzed
in two multivariate models in the high baseline-NTX subset
(Table 4). In both models, survival effects from treatment
were found to vary significantly based on age, race, serum
LDH level, and NTX level relative to the median for the
high-NTX group (102.0 nmol/mmol creatinine). The survival
benefit in patients treated with zoledronic acid was greatest
among patients with a shorter time since their primary cancer
diagnosis, younger age, and less profound NTX elevations.

The current analysis was designed to investigate differences
in treatment effects based on patients’ bone marker levels; however, other significant covariates for treatment
effects were identified, including race, performance status,
and LDH level. Further analyses are underway to investigate
how the significant covariates associated with improved survival
with zoledronic acid treatment versus placebo interact,
especially in regard to LDH status.

DISCUSSION

Zoledronic acid is the only bisphosphonate to be
appropriately evaluated in the treatment of both osteolytic and
osteoblastic bone metastases secondary to a broad range of
tumors, including NSCLC, and has been shown to signifi-
cantly reduce the incidence and rate of skeletal complica-
tions. In addition to prevention of SREs and palliative
effects on bone pain, the analyses presented herein sug-

TABLE 2. Multivariate Model with Treatment Effect, Baseline Prognostic Variable, and Their Interaction Term

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Domain</th>
<th>Patients with Respective Variable</th>
<th>Patients with All Variables (n = 244)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPI score</td>
<td><3.25 units</td>
<td>RR 1.159 (0.797–1.686) 0.441</td>
<td>RR 1.084 (0.684–1.719) 0.732</td>
</tr>
<tr>
<td></td>
<td>≥3.25 units</td>
<td>RR 0.726 (0.525–1.004) 0.053</td>
<td>RR 0.832 (0.558–1.215) 0.327</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>RR 1.001 (0.784–1.279) 0.993</td>
<td>RR 1.043 (0.761–1.428) 0.794</td>
</tr>
<tr>
<td></td>
<td>Black/Asian/Other</td>
<td>RR 0.391 (0.187–0.818) 0.013</td>
<td>RR 0.291 (0.115–0.733) 0.009</td>
</tr>
<tr>
<td>ECOG PS</td>
<td>Active</td>
<td>RR 0.947 (0.737–1.217) 0.670</td>
<td>RR 0.990 (0.719–1.362) 0.950</td>
</tr>
<tr>
<td></td>
<td>Some impairment</td>
<td>RR 0.477 (0.254–0.898) 0.022</td>
<td>RR 0.391 (0.172–0.890) 0.025</td>
</tr>
<tr>
<td>NTX status</td>
<td><6.0</td>
<td>RR 1.340 (0.852–2.106) 0.205</td>
<td>RR 1.344 (0.838–2.154) 0.220</td>
</tr>
<tr>
<td></td>
<td>≥6.0</td>
<td>RR 1.340 (0.852–2.106) 0.205</td>
<td>RR 1.344 (0.838–2.154) 0.220</td>
</tr>
<tr>
<td>Serum LDH</td>
<td><246.5</td>
<td>RR 1.119 (0.799–1.566) 0.513</td>
<td>RR 1.241 (0.863–1.785) 0.245</td>
</tr>
<tr>
<td></td>
<td>≥246.5</td>
<td>RR 0.783 (0.566–1.084) 0.141</td>
<td>RR 0.732 (0.513–1.144) 0.203</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td><14.025%</td>
<td>RR 0.896 (0.648–1.239) 0.507</td>
<td>RR 0.817 (0.551–1.215) 0.327</td>
</tr>
<tr>
<td></td>
<td>≥14.025%</td>
<td>RR 0.991 (0.704–1.394) 0.957</td>
<td>RR 0.831 (0.571–1.215) 0.327</td>
</tr>
<tr>
<td>SGOT</td>
<td><23.0</td>
<td>RR 1.044 (0.737–1.479) 0.808</td>
<td>RR 0.990 (0.719–1.362) 0.950</td>
</tr>
<tr>
<td></td>
<td>≥23.0</td>
<td>RR 1.044 (0.737–1.479) 0.808</td>
<td>RR 0.990 (0.719–1.362) 0.950</td>
</tr>
<tr>
<td>Albumin</td>
<td><38</td>
<td>RR 0.779 (0.570–1.210) 0.193</td>
<td>RR 0.649 (0.406–1.038) 0.071</td>
</tr>
<tr>
<td></td>
<td>≥38</td>
<td>RR 1.035 (0.749–1.432) 0.834</td>
<td>RR 1.075 (0.731–1.581) 0.713</td>
</tr>
</tbody>
</table>

* The following covariates showed no trends for treatment by covariate interactions in either model (p > 0.15): Cancer duration ≥5 vs. <5 mo; age ≥63 vs. <63 yr; weight ≥71 vs. <71 kg; Functional Assessment of Cancer Therapy-General total score ≥70 vs. <70; sex; narcotics use; lesion type; prior skeletal-related event; bone-specific alkaline phosphatase ≥64 vs. <64 U/L; serum creatinine <1 vs. ≥1 mg/dL.

* Test of treatment by covariate interaction.

RR, relative risk; CI, confidence interval; BPI, Brief Pain Inventory composite score; ECOG, Eastern Cooperative Oncology Group; PS, performance status score; NTX, urinary N-telopeptide of type I collagen in nmol/mmol creatinine; LDH, lactate dehydrogenase, in g/L; SGOT, serum glutamic-oxaloacetic transaminase; Albumin, in g/L.
suggest that zoledronic acid may offer additional benefits in NSCLC patients who have high NTX levels at baseline.

In the current analysis, zoledronic acid treatment was associated with significantly improved survival compared with placebo in patients with high baseline NTX, whereas survival was comparable between groups in the low-NTX subset. Although the reasons for this are not clear, it is possible that patients with high NTX may have an especially responsive pathophysiology in bone or more likely may have a greater propensity to benefit from early therapy because of their initial higher risk status for potentially life-limiting SREs. This is consistent with the large-scale correlative study by Hirsh et al.

TABLE 3. Cox Regression Analysis of Correlations Between Baseline Variables and Treatment and Survival Outcomes (High NTX Population)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Univariate RR (95% CI)</th>
<th>p</th>
<th>Reduced Multivariate RR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment, ZOL vs. PLA</td>
<td>0.657 (0.447–0.967)</td>
<td>0.033</td>
<td>0.565 (0.381–0.840)</td>
<td>0.005</td>
</tr>
<tr>
<td>Cancer duration, per 1-yr ↑</td>
<td>1.039 (0.956–1.129)</td>
<td>0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, per 1-yr ↑</td>
<td>1.008 (0.990–1.026)</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACT-G score, per 1-unit ↑</td>
<td>0.985 (0.973–0.996)</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPI score, per 1-unit ↑</td>
<td>1.066 (0.983–1.156)</td>
<td>0.123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race, Black/Asian/Other vs. White</td>
<td>0.635 (0.374–1.077)</td>
<td>0.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild/Strong narcotics vs none</td>
<td>1.797 (1.144–2.823)</td>
<td>0.011</td>
<td>1.757 (1.110–2.780)</td>
<td>0.016</td>
</tr>
<tr>
<td>ECOG PS: 2 vs. 0 or 1</td>
<td>1.971 (1.186–3.276)</td>
<td>0.009</td>
<td>1.941 (1.158–3.255)</td>
<td>0.012</td>
</tr>
<tr>
<td>Prior SRE</td>
<td>1.174 (0.778–1.772)</td>
<td>0.444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTX ≥ 64.0</td>
<td>1.263 (0.885–1.801)</td>
<td>0.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BALP ≥ 146.0</td>
<td>1.004 (0.688–1.465)</td>
<td>0.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH ≥ 246.5</td>
<td>1.199 (0.830–1.732)</td>
<td>0.334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin, per 1-unit ↑</td>
<td>0.957 (0.913–1.003)</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **RR:** Relative risk; **CI:** Confidence interval; **p:** p-value
- **Covariate interaction test:** **p** < 0.15 indicates a significant interaction effect.
- **Domain:** Specific patient characteristics.

TABLE 4. Multivariate Model with Treatment Effect, Baseline Prognostic Variable, and Their Interaction Term (High NTX Population)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Domain</th>
<th>Patients with Respective Variable</th>
<th>n</th>
<th>RR (95% CI)</th>
<th>p</th>
<th>Patients with All Variables (n = 135)</th>
<th>n</th>
<th>RR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer duration</td>
<td>0–<5.02 mo</td>
<td>77</td>
<td></td>
<td>0.462 (0.273–0.784)</td>
<td>0.004</td>
<td>0.107</td>
<td></td>
<td>0.438 (0.252–0.763)</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>≥5.02 mo</td>
<td>67</td>
<td></td>
<td>0.853 (0.502–1.449)</td>
<td>0.557</td>
<td></td>
<td></td>
<td>0.878 (0.511–1.509)</td>
<td>0.639</td>
</tr>
<tr>
<td>Age</td>
<td>0–<63 yr</td>
<td>63</td>
<td></td>
<td>0.403 (0.221–0.732)</td>
<td>0.003</td>
<td>0.043</td>
<td></td>
<td>0.386 (0.208–0.718)</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>≥63 yr</td>
<td>81</td>
<td></td>
<td>0.886 (0.550–1.429)</td>
<td>0.621</td>
<td></td>
<td></td>
<td>0.704 (0.551–1.482)</td>
<td>0.689</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>124</td>
<td></td>
<td>0.791 (0.528–1.183)</td>
<td>0.254</td>
<td>0.014</td>
<td></td>
<td>0.803 (0.530–1.218)</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>20</td>
<td></td>
<td>0.201 (0.073–0.525)</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.197 (0.059–0.505)</td>
<td>0.001</td>
</tr>
<tr>
<td>Narcotics used</td>
<td>None</td>
<td>29</td>
<td></td>
<td>1.115 (0.462–2.694)</td>
<td>0.809</td>
<td>0.120</td>
<td></td>
<td>1.115 (0.461–2.693)</td>
<td>0.809</td>
</tr>
<tr>
<td></td>
<td>Mild/Strong</td>
<td>114</td>
<td></td>
<td>0.514 (0.338–0.781)</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.502 (0.325–0.778)</td>
<td>0.002</td>
</tr>
<tr>
<td>NTX</td>
<td><102.0</td>
<td>71</td>
<td></td>
<td>0.964 (0.577–1.609)</td>
<td>0.887</td>
<td>0.001</td>
<td></td>
<td>0.950 (0.562–1.605)</td>
<td>0.847</td>
</tr>
<tr>
<td></td>
<td>≥102.0</td>
<td>73</td>
<td></td>
<td>0.270 (0.152–0.479)</td>
<td><0.001</td>
<td></td>
<td></td>
<td>0.263 (0.144–0.482)</td>
<td><0.001</td>
</tr>
<tr>
<td>BALP</td>
<td><146.0</td>
<td>47</td>
<td></td>
<td>0.988 (0.495–1.971)</td>
<td>0.972</td>
<td>0.146</td>
<td></td>
<td>1.040 (0.505–2.139)</td>
<td>0.916</td>
</tr>
<tr>
<td></td>
<td>≥146.0</td>
<td>97</td>
<td></td>
<td>0.537 (0.344–0.839)</td>
<td>0.006</td>
<td></td>
<td></td>
<td>0.530 (0.335–0.840)</td>
<td>0.007</td>
</tr>
<tr>
<td>LDH</td>
<td><246.5</td>
<td>89</td>
<td></td>
<td>0.843 (0.526–1.351)</td>
<td>0.478</td>
<td>0.030</td>
<td></td>
<td>0.883 (0.537–1.450)</td>
<td>0.622</td>
</tr>
<tr>
<td></td>
<td>≥246.5</td>
<td>55</td>
<td></td>
<td>0.356 (0.191–0.661)</td>
<td>0.001</td>
<td></td>
<td></td>
<td>0.345 (0.183–0.650)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td><11.70</td>
<td>77</td>
<td></td>
<td>0.454 (0.269–0.767)</td>
<td>0.003</td>
<td>0.075</td>
<td></td>
<td>0.476 (0.278–0.815)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>≥11.70</td>
<td>67</td>
<td></td>
<td>0.892 (0.525–1.515)</td>
<td>0.672</td>
<td></td>
<td></td>
<td>0.876 (0.503–1.528)</td>
<td>0.641</td>
</tr>
</tbody>
</table>

Notes:
- **Domain:** Specific patient characteristics.
- **Covariate interaction test:** **p** < 0.15 indicates a significant interaction effect.
- **RR:** Relative risk; **CI:** Confidence interval; **n:** Sample size; **p:** p-value

Copyright © 2008 by the International Association for the Study of Lung Cancer
report of bone marker levels and outcomes in patients with solid tumors (including NSCLC) published by Brown et al.12 in which recent bone marker assessments were found to better correlate with risk of SREs and death compared with baseline levels. Moreover, in a recent report in the breast cancer setting, patients with high baseline NTX levels that normalized during zoledronic acid treatment were reported to have longer survival compared with patients whose NTX levels remained persistently elevated.25 Conversely, patients with normal NTX at baseline are at a lower risk for SREs, and their clinical course and survival prospects are more likely to be driven by extraskeletal disease.

Although the current analyses were exploratory in nature, reduced mortality in zoledronic acid-treated patients versus those who received placebo could be the result of multiple effects that have been reported in previous clinical trials and preclinical assessments. For example, zoledronic acid reduces the risk of potentially life-limiting SREs.15,16 In phase III clinical trials in which bisphosphonates have reduced the risk of SREs, survival was often longer with bisphosphate treatment versus placebo, although these differences have seldom reached statistical significance.26–29 There is also preclinical evidence that zoledronic acid can impede tumor growth, both overall and within the bone microenvironment.30–36 The relative contributions of each of these effects to the overall survival benefit remains undetermined and may vary based on tumor type and other disease characteristics.

Although the subset of patients with NSCLC who had bone marker assessments was not a randomized cohort in these retrospective analyses, all baseline covariates were included in a complex multivariate model from which the least significant variables were removed in stepwise fashion to achieve a reduced multivariate model. In the overall population of patients with NSCLC who had bone marker assessments, multiple factors correlated with survival. However, among the patients with high NTX levels, only zoledronic acid treatment, requirement for no more than mild analgesics, good performance status, absence of severe lymphopenia, and normal LDH status correlated with improved survival. Of these variables, zoledronic acid treatment compared with placebo was associated with improved survival and constitutes the only factor that can easily be changed by the treating physician.

In the current analyses, survival benefits appeared most profound in patients with factors that were associated with less advanced disease or bone lesions (e.g., shorter cancer duration and elevated NTX that has not reached extremely high levels). Elevated LDH, a known indicator of poor prognosis in NSCLC,37 was found to be linked not only with reduced survival but with a reduced likelihood of experiencing a survival benefit from zoledronic acid compared with placebo. These findings suggest that zoledronic acid treatment of bone metastases early during the course of disease progression may be the optimum strategy. However, it must be noted that the current indication for zoledronic acid is for the prevention of SREs from bone metastases, and all patients with bone metastases are considered at risk for SREs regardless of their overall disease state or performance status.

Currently, a phase III prospective study is ongoing to evaluate the efficacy of zoledronic acid in delaying or preventing bone metastases in patients with stage III NSCLC. The results of this trial in patients with earlier stages of cancer may underscore the importance of bone-directed therapies even in patients without established bone lesions. The current study has elevated the importance of treating bone metastases in patients with high-risk disease.

ACKNOWLEDGMENTS

The authors thank Catherine Browning, PhD, ProEd Communications, Inc., for her medical editorial assistance with this manuscript.

REFERENCES